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ROBUST PREDICTION AND INTERPOLATION
FOR VECTOR STATIONARY PROCESSES

by

Haralampos Tsaknakis, Dimitri Kazakos, and P. Papantoni-Kazakos
University of Connecticut, Storrs, Connecticut 06268

and P
University of Virginia, Charlottesville, Virginia 22901

Abstract

Robust multivariate prediction and interpolation problems for statistically

contaminated vector valued second order stationary processes are considered. The

statistical contamination is modeled by requiring that the spectra of the. .

processes lie within certain nonparametric classes. Both prediction and inter-

polation are then formalized as games whose saddle point solutions are sought.

Finally, such solutions are found and analyzed, for two specific multivariate

spectral classes.
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1. Introduction

The prediction and interpolation problems for stationary processes have

received considerable attention for a number of years. The bulk of the work con-

centrates around scalar processes and the parametric model. The assumption there

is that the measure generating the stochastic process is well known. The initial

significant results on prediction and interpolation for the parametric model were

given by Wiener (1949) and Kolmogorov (1941).

Strictly speaking, the term prediction refers to the extraction of a datum

from the process, when a number of past process data have been observed noiselessly.

The term interpolation refers to the same extraction, when past as well as future

noiseless process data are available. The two terms are extended sometimes to

include noisy observation data. Some results on those extended problems, and for

the parametric model, can be found in the papers by Snyders (1973) and Viterbi

(1965). We point out here that the majority of studies on the extended problems

consider asymptotic and linear prediction and interpolation operations.

The last few years considerable attention has been given to the robust extended

prediction problem. Some attention has also been given to the robust nonextended

interpolation problem. The robust model is nonparametric, and the assumption is

that the measure that generates the stationary process is not well known. The

existing work on robust extended prediction and interpolation concentrates atound

scalar stationary processes, linear asymptotic prediction and interpolation

operations, and noisy observation data. Representative results here include robust

Wiener and Kalman filtering for scalar stationary processes (Masreliez et al (1977),

Kassam et al (1977), Martin et al (1976), Cimini et al (1980), Poor (1980)). Related

work on time series outliers can be found in Martin et al (1977). Hosoya (1978)

considers the robust nonextended prediction problem, for linear contaminated

scalar stationary processes. The robust solution is found there within the class

* of asymptotic linear prediction operations. A game theoretic formulation on the

i: ~~~~~~~~~~. .. .. ............. . .......... -.. ",... - "*,... "t . ,.,".* -;',.""" * :
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measures of the stochastic processes is presented by Papantoni-Kazakos (1984), for

the robust extended prediction problem. Chen et al (1981, 1982) consider robust

multidimensional matched filtering, for classes with identical eigenvectors.

Regarding the robust nonextended interpolation problem, for scalar processes, the

interested reader may look into the works by Taniguchi (1981) and Kassam (1982).

The prediction problem for vector processes is considerably more involved than

that for scalar processes. The difficulty is mainly due to the cross correlations

among the component processes, which have a direct impact on the complexity of the

correlation matrix, and the spectral distribution matrix of the vector process.

Important questions regarding the structure of a vector process such as rank,

regularity, and non-determinacy are treated by Wiener et al (1957), (1958), Helson

et al (1958), Hannan (1970), and Zasuhin (1941).

In the present paper, we consider the robust nonextended prediction and inter-

polation problems for vector stationary processes. Vector processes have not been

treated in this case (some limited consideration for the interpolation problem can

be found in Taniguchi (1981)), and they present interesting peculiarities both

theoretical and practical. We will generally assume that the spectrum of the

vector process, which is represented by the spectral distribution matrix, belongs

to a class of spectra, and we will formulate the prediction and interpolation pro-

blems as games with saddle point solutions. Then, we will find those solutions for

two specific spectral classes. One of the classes represents linear contamination
,....

of a nominal spectral matrix. The other class includes the set of all spectral

matrices with fixed energy on prespecified frequency quantiles.

The organization of the paper is as follows. In section 2, we give a back-

ground on the multivariate prediction and interpolation problems. In section 3,

we define the spectral classes under consideration, and we formalize the prediction

and interpolation games. In sections 4 and 5, we find the saddle point solutions

• -" .°° .*u
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for the prediction and interpolation games respectively. Finally, in section 6

we present some conclusions and a brief discussion.

2. Preliminaries

The original linear prediction problemfor an n-variable, discrete-time,

second order stationary process, (4, k E Zi, is equivalent to searching for a

matrix trigonometric polynomial g (ejo) of the form

N
g p(ej,) =I + Ai ej  () "',

i-l .,

which makes the mean square error of prediction

ep(( ) gpeJ) 1 pe*) T .'W
(F(W). g (ef g (e (2)

as small as possible. In (1), N runs over all the positive integers, A1 A2 ae ar

any nxn complex matrices, and I is the nxn identity matrix. In (2), F(W) denotes

* the spectral distribution matrix of the process, which defines a positive definite

Hermitian finite matrix-valued measure,on the Borel field of the measurable space

[-'n,r], with d f F(w) R E fu x The symbols *, T, and tr stand forW -7ro -1k--k

conjugate, transpose, and trace, respectively.

Let S be the convex set of polynomials of the form (1). We define the
p

space L2(dF(w)) of all nxn matrix-valued functions A(w) on [-',], for which (3)

below is true.

iTT
tr f A(W)d F(W) A,(w) < (3)

Then, SpC L2(d F(w)). Considering any two elements, AM(W) and A2(w), of

L2(d F(w)) as equivalent, iff tr f (A ()-A2("))d F(w) (A (W)-A2 (w)) 0,
-ITthen, L2(d F(w)) is made into a Hilbert space (Hannan (1970)), with inner product

and norm defined respectively, as follows.

........................................ ........ .............,.....,.....................
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2A dW) FA f Al(Li) d F(w) A (W
-7rFW

1ito)/2
IIAu i1d FM = A AM

Under the new notation, (2) can be rewritten as follows.

OgW(eJ)) (2i)-  g (eiW)"- (4)ep (F(w),p ( () p d F(W)

Now, let S (d F(w)) be the closure of S in L2 (d F()). Since Sp(d F(W)) is
P 2 p

a closed and convex set in the Hilbert space L2(d F(w)), it contains a unique

element of smallest norm (unique in the equivalence sense defined above). It

follows that the infimum in (2) with respect to g (ej) is attained in Sp(d F(W)).
p p

IL For reasons that will be explained below, we are going to consider a more

general prediction problem, by enlarging the set S, to contain all matrix tri-

gonometric polynomials go(e ) of the form,P(ej  i"

S p N
g;(ew)w A° + Aewi (5)

i.-I

As before, N runs over all the positive integers, and A1 , A2 ... are any complex

nxn matrices. Ao, however, can now be any nxn complex matrix, whose determinant

is constrained to be equal to 1. Let S° be the set of all polynomials of the form
p

(5). The convex hull Soc of S0 will contain all polynomials of the form
Np p

B 0+ Bi e i i , with det (B ) > 1. This follows from the concavity of the func-o i-
i-IX

tion det (-); namely, det (XA+(I-X)B) (det(A)) (det(B))-; 0 < X < I (Bellman
(1970)). If we take the closure So (d F(w) of Soc in L2(d F(w)), we can define

p p 2

the new prediction problem as follows.

min e (F(w),g (eJ)) = (2t) mn g(eJW) d F(w) ,
p p p u)d F(w

gpCe )ES Cd F(w)) g(e )eSoc d FW)

(6)



As a result of the derivation of the optimal predictor in Helson et al (1958),

the minimum in (6) assumes a closed form expression. In particular,
WW

rain e (F(w),g(e )= n exp[(2nn)- f trtogf(w)dw] (7)p "p-

g(e )cSp c (d F(w))
P p

where f(w)dw is the absolutely continuous part of the measure d F(W), with respect

to the Lebesque measure in [-r,7r], and where f(w) is the spectral density matrix

of the process, which is Hermitian, nonnegative definite a.e. (dw), and integrable

in [-7r,1ir. If the scalar function trtogf(w) in (7) is not integrable (since

f trtogf(w)dw is bounded from above,as can be verified by using Jensen's inequality,

this can only happen if f trtog f(w)dw = the right hand side of (7) is inter-

ol fcpreted as zero. An element g (w) in Soc(dF(w)), that attains the minimum in (6)p p

is such that,

of *T -i

gp )(gpw) = exp[(2nn) f trtogf(w)dw I-togf(w)] (8)
p p -IT

for points we[-r,W],such that f(w) exists (i.e. a.e. (dw)), and g() fi 0 for an
p

at most countable subset of [-Ir,r]. The latter is simply a manifestation of the

.fact that the singular part of d F(w) contributes nothing to the minimum in (7),

0~and it corresponds to a purely deterministic process. If g () exists, it is
- p

then proven by Helson et al (1958) that go (W)e S (d F(M)); i.e. the determinant
-P p

of its leading Fourier coefficient is equal to 1, or equivalently the minimum in

(6) for gp(w)c S (d F(w)) exists, although S (d F(w))'is not convex, and it is
p p p

attained at gp (W).

Consideration of the prediction problem in Soc (d F(w)), or equivalently in
-; p

S (d F(W)), has the remarkable advantage of a simple closed form expression for
p

* the minimum error given by (7), which is a direct generalization of Szeg6's, formula

(Grenander et al (1958)), for scalar processes.

•



The linear interpolation problem for an n-variable discrete-time second order

stationary process (,k c Z) is less difficult, because the constraint set of the

associated minimization problem is larger than S (d F(w)), since no causality
p

requirement exists.. We will denote by Si the convex set of all trigonometric poly- -

nomials of the form,

N

9 (e I+ ~A ej~ (9)

i--N
i~o

*where N runs over all positive integers, and (Ai i 0 0} run over all complex nxn

*matrices. The error that has to be minimized is similar to that in (2), and it

is rewritten here for completeness.

e~Fw)g(e(i)z2ll trf gj(eiW)d F(~ (10)2n (

g~w)S(dfim dF(F() (11)

ain deeiv ue ana (970) o th miiu in (~)) is givn by ieteineplto

min e 27w gr (e ((2dr) mi (12

and it is( () at i fo some) gSci)E5 (d F(w)) uch that d

Asdrvdi an n 190) th minmu in (13) isgvnb

min ~ ( e ()dw ) 2 r f (w) ; a)e((12)

-- 7

* f(w) and it is integrable for full rank processes.
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3. The Robust Formalization

We now look at the above problems from a different point of view. We assume

that the spectral structure of the process is only vaguely or.incompletely specified.

This corresponds to a more realistic situation, since the procedures for obtaining

the spectrum of a process always involve errors. This applies even more to vector

processes, where the increased complexity results in larger errors. With the above

in mind, it is clear that new formalizations of the problems considered in section

* 2 are needed. Such a formalization is given below, where the spectral distribution!-

matrix of the process is assumed to be a member of a whole class of spectral distri-
...

bution matrices. For the purpose of this work we are going to consider two

different types of spectral classes, denoted by FL and FQ, which are defined as
L$

follows:

(a) F f {F(W)/F(w) = (1-)F (w) + e H(W), wc[-ir,7r],c fixed and such that,
L o

0 < E < 1.

Fo(w): well defined fixed nominal spectral distribution matrix

H(w): arbitrary spectral distribution matrix satisfying

(27) trf dH M (27) tr F (w) W > 0, W fixed)

(b) F = {F(W(270)-trf d F(W) ci > 0, i=l,...k, cl,...ck fixed
Di

DI,...D k fixed Lebesque measurable subsets of [-w,w] with positive

kI

measure each and
k

D 1 1 D 0;V i 0 J, U Di, [-, }"ir..

F is called the C-contaminated class, or the gross error model, and it corresponds
L

to the situation where the nominal process F (w) occurs only with probability
0

I-C < 1, while with probability C, any other process, with the specified energy

constraints, may occur. F is called the p-point class, and it contains all the

. -. .- .. . ' '.: ;-,". ,-";." : ,-' 1- :" *. ", , ,' . . .. . . .l .. : ". ..- " .: ,,-"'. ."-- .'-,'- "?-'; * ".-*/ - ,



spectra, whose energy is specified by a positive number, on a finite collection of

mutually exclusive and exhaustive measurable subsets of [-r,wJ, with positive

Lebesque measure. .

In pursuing a robust formalization, for prediction and interpolation, it will

be necessary to restrict the classes S (d F(w)), Ti (d F(W)) defined in section 2,
p

for the simple reason that instead of a single F(w), a whole class of spectral

matrices is considered. In particular, we will consider the following classes of

predictors and interpolators.

Sp '* So (d F(W)) SL = - (d F(:)

pL F(W)W F(w)eF~
LL

(14)

S ( S (dF(W)) S = Si(d ())
Q OFF P iQ F(3)e:F (di)

QQ

We are now in a position to formalize the following games:

Find pairs (Fe e),g4T())eFTxSRT(T = L,Q. R - p,i) such that

eR(F -WT)JgRT(W) < R(YT 'RT()

V FT(W)CFT, V gRT(W)C SRT (15)

If the pairs with the superscript e exist, we call them robust, and they are the

saddle point solutions of the games.

In section 2, we saw that the minimum error expressions (7) and (12) depend

only on the absolutely continuous part of the spectral distribution matrix F(W);

namely, the spectral density f(w). The spectral singularities contribute nothing

to the minimum. However, under the present formalization it is not, in general,

true that the operators gRT(w) will belong to the corresponding intersection

classes ST (T - L, Q, R - p, i), if we allow spectra with singularities, in our

classes FL, F^. As we will see in sections 4 and 5, this is due to the fact that

the operators g; (w) are defined a.e. (dw) in -ir , , and they do not necessarily

... •. .-..T

.*-%L._ . :*, .,. •_ '= _". . *. .. * . ** _ . . . . . * . . ..___. ._. 4 . *. - ... _ -. . .* . ._- . ._. _.- _- .. _ .ee .- 9 * -



have to be limit points of the corresponding sets of trigonometric polynomials,

with respect to norms L2 (d F()), for all the F(w)'s in either F or F , that2 L Q
contain singularities. For this reason, and throughout the rest of the paper, we

will restrict attention to processes with absolutely continuous spectra. In

particular, we will assume that the nominal spectral distribution matrix F (W), in
0

the definition of the class FL, is absolutely continuous with density f (w), and
L 0

that H() runs over the absolutely continuous spectra with density denoted by h(W).

Similarly, the class F will consist of all F(w) that, in addition to the constraints
Q

imposed in definition (b), will be absolutely continuous as well. Under those

assumptions, the two classes F and F reduce to classes of spectral density matrices.L Q
For notational simplicity, we will frequently omit arguments of functions. In sec-

tion 4, below, we solve the prediction games on F xS and F xS . In section 5,
L pL Q PQL

we solve the interpolation games on F xS and F xSi. In all cases, we state the
L iL Q iQ

solutions, and we prove them directly by construction,

4. The Solution of the Prediction Games on FLxS and F xS L.-

Let { Xj(), O(w); i=J,...n} be the ordered eigenvalues of f (c) (X,(W)>X0i MY

iffil,...n-l,V -r,7]), and the corresponding normalized eigenvectors. Since

(2) -1 tr f (l-E)f (M)dw = (2n) f E (--)(w)dw = (I-E)W<W, there exists a
-71 -Ti1l

positive number c such that,

n(270 -1 f " max((l-c)X(w), c)dw W (16)

i=l

Let us define the set of functions,

X = max((l-)X (w), c), i=l,...n (17)

". and the matrix

n

(W Fa Xiw ()x(w)) *T(18)
i'l1

. . . . ..|. . . . * .. .
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e
fL(W) is Hermitian and positive definite, for all ow[-w,w], since its smallest eigen-

value is uniformly larger than c > 0. Furthermore, fL( )EFL, since f (W)-(l-)f (M)=
11 

V L

E t (X,(,) - (l-E)Xo(w)) O(W)(X (w)),T is nonnegative definite for all w, and (16)
i=l

holds. We also note that --<neog c = tr tog(c.I) < tr Log fL(w) and

(2nn) f tr tog ()d<og((2wn) f tr f (w)dw) = tog H < -, from which we
-'TLWJ L n-e e -ie "' " -,

conclude that tr tog fL (w) is integrable. Therefore, tr tog (fL(c)) is also integrable.4

Finally, since 0 < (fL(e))-1 < C- 1 1. (fe(w))- 1 is also integrable. Let

K L __exp[(2nn) f tr Log fL( )dw]. We consider the matrix K (f(w))- , whicheL LWJ eL L

is easily recognized to be equal to the right-hand side of equation (8), in section

2, for fe = f, and which satisfies the requirements of Theorem 7.13 in Wiener et al

(1957, 1958). From that we conclude that there exists a factorization of

*Ke (few) -I ofeL (W)) of the following form. L

pL PL eL L()) ; a.e.(dw) (19)

where, if (Ae n e ZI are the Fourier coefficients of ge( ) then Ae 0 forA 15n 8o

0, and det e 1. According to the derivations in Helson et al (1958), g e M

is the element of S( (w)dw) that minimizes ep(fL(w) g ()), with respect to
p L p L pL

gp (w) C S (fL(w)dw). That is,

e g (w)) ep(fL(c),(fpLw)))g <eM)
p L' pL - p L (20)

V g ()e So (fL(w)dw).

In Lemma I below, we prove that g S Theorem 1 establishes that the pair

ig(W)) is the solution of the prediction game on FxS

pL L p
KLemma 1 geL(w) .Z

Proof

e(,))-i -pLe
From (19) and (f < c I, we conclude that each entry of ge(w) is essentially

L s ssentially :'1

Kbounded (dw). From its Fourier coefficients A, AID ... V we form the sequence

.* . *. . .*. . . . . . * . . * .. .... 0. .

E 4 

- . -
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{Ge(eJ)} of the Fejer-Cesaro partial sums,
N"

Ge )= - Se(e (21)
k=O

where ) "AE t'Ge ) i

e iW) e w e jw o
SN (eAeJ Evienty , Nje c

i=O --

e jWBy the usual theory of this sum, each entry of GN(e ) converges a.e. (dw) to the

corresponding entry of gL(W) boundedly, since ge(W) is bounded. Put

hN(*) e G(e) - gpL(w). Then, for any f()L we have:
L5

2 7rT -

I Ih()lf(w)dw " f tr hN(oa) f (w) hN (w)dw <,-:

< f mxh;T(W)hN(w)) tr f(ow)dw. i,:!i

where AX(-) denotes maximum eigenvalue. Since hN(W) - 0 a.e.(dw) boundedly, it

is implied that max(N (W) hN( )) + 0 a.e. (dw) boundedly. Now, since tr f(W)

contains no singularities, due to the assumed absolute continuity of the members of

FL, it is concluded that x(h'T(W) hN(W)) . 0 a.e. (tr f(w)dw). Application of

the dominated convergence theorem on A (h T (w) hN(w)) yields:

iTT
tim f a( T(w) hN(M)) tr f(w)dw .
N- i

7T
= f tim max(hN T(W) hN(W)) tr f(w) dw - 0, which implies

max N-c

I IhN(b)) I If(w)dw 0

The preceding arguments show that there always exists a sequence of elements

of S°p which tends to gpL(w), under any norm ''.I f(w)dw' f(w) e FL. Thus

L:
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..5-

e .

gpL(,O pL .,.

Remark. The basic constituents for the proof of lemma I are: 1) The fact that the P

eigenvalues of fe (w) are bounded away from zero, which implies the a.e. (dw) bounded-
L

ness of gL(w). 2) The absolute continuity of the members of the class EL, which

permits the transition from the a.e. (dw) to the a.e. (tr f(w) dw) convergence. The

above requirements are satisfied for all the other games we consider in the sequel.

Theorem I

The pair (fe(w), ge (w)) is a saddle point solution of the prediction game onL -L

FLxS pL

Proof

We have to prove:

p(fL , p) eV L e (f, g V fL c F g £ SpL (22)

The right-hand side inequality in (22) follows from (20) and S (f d))S Alsop Lp..

e(f L g pL- n exp[ (2rn) f tr log fL(w)dw] = n KeL (23)

7r -

and

e I' e -e *T"
ep(fL, p = (2w)- f trgp(gp) fLldw .(24)

Combining (24) with (19), we get,

- e - 1 (2) 4 e -1ep(fL  g;L (2w) - Ke f tr~fL L-]dw ::,:...
p L9 L KeL~ _r L L dw

n |

(2w)- KeL f F ,1 0x_ o)*T 0f() AX(w)dw (25)L -

Put pi(W) =(x(w)) fL(w) xi(). Since fL c FL. fL(w) - (1-c) f (w) should be

nonnegative definite which implies that

, t~~ * . .. * .. '... . . . '' . .. ."
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v > (1- ) X (w) ; V w, (1,...n (26)

Also
n

(2#) -1  f tr f()d 
= (2r) f i l(w)dw = w (27 .

-lr - t~=1 '""

From (25) and (23) we obtain,

n

e ( e (f g Ke( d n)"

, o [- o ]
p L9 "_p2L P(( L i (

_w

)  C

n 
01-

dIA + fw

ch secdl eniy a-l

(1-) (4 - ci 1D()NI D
i  I1

iTE -I X() (-) (l--C)Xo(W)<c

K e

~~rLd~ + dw rf( f (w)dineL c iC L L

adure letnd sie inelt ien (22 fnpeoows. )zFQ tnec I "O,

WeDt  no Ocet the sleolut(i ouedpedition rme zeon an fro inWfineb

K nQ
athe peta d desiy mtixult n(2)flos

k

fe~ nZ~ ci 
1D1  l m(Di)' (28)

where ID (w) is the indicator function of the met D.9 and m(-) is the Lebesque

measure in -riri t can be seen by inspection that fe(w) c F. Since c1 > 0,

m(D) > 0, the eigenvalue of f (wM is bounded away frort zero and from infinity, by
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min max2 respectively. It follows that (fe (W)) -
ni-l,..k (D I) 1  max k

and tr Zog Qf(w) both exist and are integrable. We thus conclude that there

exists some gQ(W) e 50 (fe(Wdw), such that
PQ p Q

ge (g e (fe)-l e dw (29)
pQ pQ eQ Q

- -1 I ewhere ke exp[(27rn) ftr tog fQ dw].

where the Fourier coefficients of geQ, {A , I C Z), vanish for i < 0, and where

det A! - 1. Exploiting the assumption of the absolute continuity of all the . -
0

members of FQ we can argue exactly, as In Lemma 1, and establish that

ge C SQ " S (f dw). Also, g is the element of S0(f dw) which minimizes
Q QPPQ p Q

Q
e (f 9 We conclude this section with the following theorem.
p Q' PQ

Theorem 2

*The pair (f e g e given by (28), (29) is a saddle point solution of the

prediction game on F xS
Q pQ* f

Proof. We have to prove that, e p(f Q, geQ) < e p Q g Q ).S e p(fQ1 g PQ)
V fe F; Vg CS. The right-hand side inequality follows from the fact

V Q FQ pQ ApQ

that S Cs ( dw), and that gQ is the minimizing element of e f gQfor
pQ p Q Qp Q P
5 0(fe s dw). We thus have:

e (f .gQ 2  tr fge f (g Q)

ke (fw- kS nm(Di)
_- tr[f fe-Jdw f ~~ w tr f dw-2w f Q Q 27r ci D Q

mn eQ pe f PgQ~

* 'f7
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5. The Solution of the Interpolation Games on F xS and F xS

We start with a proposition:

Proposition I

If p(w) is any nonnegative integrable function in [-I,], then the function

T(y) = y f [max(y, p())I dw
-7-.

defined for 0 < y < ess sup p(w) is monotonic and continuous.

Proof ..

For 0 < Y2 < yI < ess sup p(w) we have:

T(yj1)-T(Y 2 )  f dw + f - dw - f dw- f d71_ (w) Yi<P Me p Me ~ 2p() p().-.- -.

¥1 2 72, "i:_

= f d f -dW- f d- - d
yl>_p (t) >Y2 Y1 <p (W) j7 (w) y1<p ()) > (2) . d>pe)>

= f T i~ dw + p dw > 0.
Sy 1<p(0)) M p(w)

Also, T(y)-T(Y2) < 12 f dw , from which the continuity follows.AlsoT(71-T(7) < 2 p(w)>72y
T2 2

Now, as in section 4, let {X(X0 ), x0(w), i-l,...n} be the ordered eigenvalues

and the corresponding eigenvectors of the nominal spectral density matrix fo(w)-
0

For each eigenvalue we define the function,

Ti(y) = y f [max(y, (l.-E)x(M))] dw, i=l,...n (29)

Due to the monotonicity and continuity of Ti(y), for any positive number

c < 27r, there exists a unique Ti such that T (y1 ) - c, i*,...n. We put

% :.
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Y (c) T- (c). The inverse i ( is also monotonic and continuous. Now,

It n
since (2n)- 1 f E (l-E)Xo(w)dw - (1-e) W < W, there exists a positive number

-ir i-i•...

C such that,

n

(2"r) f max(T' l ( c * ) , dci = W (30)

7ri-1

Before we proceed further, we will make an assumption, concerning the eijen-

vectors of f (c), {x0 (w), i-l,...n}. For the purpose of obtaining closed form

o -1

solutions, we will assume that {(O)} are constant, independent of w, for every.

0
i=1,...n. We denote them by A, omitting their argument. Thus, we consider the

class F of spectral density matrices,such that the nominal f (M) has constant eigen-
L L

vectors. We note that this is different from requiring that all members of F have
L

constant eigenvectors.

We define:

A M(w)= max(T (c*), (1-E)( M)) (31)

n
f e() = .(,) o (o)*TfLi~ (32) "

The eigenvalues of f e (c) in (32) are bounded away from zero, since they are allL

uniformly larger than or equal to Tl(c*) > 0. Also, fe() C FL due to (32), and

to the fact that fe(c) > (1-) f (c); V wc[-ii,7r. We define0

9 e L(w) -27r f (fe(,))-,ldw) (fe(.))-' (33)
il, G....L .

which minimizes Igi(W)IIfedw, gi(w) C si (f~dw). Since (2) 1 f ge(w)dw - I, the "."

Fejer-Cesaro partial sums of the Fourier series of g(w) are trigonometric poly-

nomials belonging to Si. Furthermore, since the entries of geL are bounded by

(33), the sequence of the Fejer-Cesaro sums will converge dominatedly a.e. (dci) to

.t_
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g L(W). The absolute continuity of the members of the class F' together with the

application of the dominated convergence theorem then implies, in a way similar to

that in Lemma I, that the above sequence will converge to g M, in the nor

['-''f(w)dw, for any f(w) c F. Thus gL(W) C S S (f(w)dw). We now
f (w)eFL

state the solution of the game on FL xS iL

Theorem 3

The pair (fe(), g ()) defined by (31), (32), (33) is a saddle point solution
L, M

of the interpolation game on F xS
L iL

Proof

We restate the theorem, as follows.

((Wge M)< e e) e) < etLe) Ml~ ))" "-
eifL() giL e ) < efLe) giL -- L iii

;V fL(w) e FL, V g () C S

The second inequality follows immediately from section 2, and the fact that 2.

- eS (fL(A) d). -,-.-~iL i L " -

Put k1L U (f L (w)) dw) . The following relationships are valid:

ei(f(W), g(w)) -ei(fe(w), ) (2w) e ( )_f())(gL())*Td
-ww

tr~k (fef )leeL L L)) (Lw)-  tg

et (L( f (fL ( ))L

-".

n Te

=2i~ ~ f dw (34)
i2w j 7r w) -l 2 -7r (Xe M) 2

-Iw
- --.-. i.i,T e '£

L L L i fL oi-W)( A,
(IE) 0 (w) (an) (20- 7r T"

- (-e:X:(),and(2 - I f tr f (w)dw - (2w) -  f f~e M dw W I. .,
-7r L-7 t= ..
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esL(). The absolute continuity of the members of the class FL, together with the

application of the dominated convergence theorem then implies, in a way similar to

that in Lemma 1, that the above sequence will converge to ge(w), in the norm

for any f(w) c FL.  Thus g C SiL ) S (f(w)dw). We now

L
state the solution of the game on F xS

L iL

Theorem 3

The pair (f(w), M ge)) defined by (31), (32), (33) is a saddle point solution

of the interpolation game on FLXSiL. .

Proof

We restate the theorem, as follows.

efM g () ei()(fe(.) ' ge e(fe(w), giL(U ) )  ...et L() giL() < L iL() <_ L

V fL(w) e FL, V g() S.

The second inequality follows immediately from section 2, and the fact that

iL (w) dw).

Put k'L- (f (fL(,)) -  dw)-. The following relationships are valid:

e(fL(w), g ) fL() M) (2w) f tr g (gL ) d "

- 27 f tr[keL(fL( )) (fL(w)-fL(w))]dw .

n T

i2 [ (()-d] -

-w

,T • T -
Since f M C F fL() > (l-f)MM f>( w) •

SfL() FL - () >-

= (I-C)M,(w), and (21T) tr f (w)dw - (21T) f x f(w) dw - W.
- L -iI '..

;..:.:
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Put v1  fL -i > (1-C)X (W); V WC[-r,7r], i=l,...n. Then, from (34)
Li

we get:

ee(f (w)eW e (fe(.) •eel (L (eiL (e) L giL ( )  ':::

1zvl (w)-T (c

2ir e -1(c2- * 2 dw+)
1-hf (X(w))- dw] 2 ' ,>(l-e)X 1 (w) T I(c)) d.

-iT

vi(w)-(1-E)X (w) 1] +:_
+ f

nA (~~c) 2  -1 *

< 2r *2 _0c) -1 *2 w
*(c ) )>(1-e)x,(w) (T- (c.

+ T (w(lcX() dwlu

2 + ( T l ~ *)-- -) [f v i ( -Tl;c ) : .: -*;•. ..

vi,(-o-+) l CAO i:):

-2 r F f (vi()-X(W)) dw - 0.

(c*) -I"i-,i

The proof is now complete.

Finally,we examine the interpolation game on F xS . The result here is -
Q iQ

summarized in a theorem.

Theorem 4

The pair (f(w), gQ. , ) which Is defined by the expressions,

k

f(W) 1 , 2W ct I1 (W) m
-l (Dt ) ' - X M"I

2Qw) Qi f~) dwi (fQ(M)
7'1 7 -"-

*2 . -'o

.W.* . . . ... .t * ~. . , * t.J . *.%..-l
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is a saddle point solution of the interpolation game on F xS
Q iA

Proof

Sinc fwis bounded away from zero and from infinity, due to c,> 0,

M(Dt) > 0, t I l....k, and since we are considering absolutely continuous spectra

only, it will follow again that 9~~w M S~~ The inequality,

eif() Q(w)) < e,~~() Mj~ ); V giM CSQ follows again from

section 2 and S Q S~ (f Mw dw). We also have:

e (fQ M) g e M) (2w))1 tr f e feW eM d N.

k
2~ 2rf (e(w))-i 2 f tf~~w

4wci De

k 2 2

)_ 
(Dt)

2 2,rQ

6.~~~~- Cocuios isuso

In this paper, we considered the prediction and interpolation problems for

vector processes with ill-specified statistical structures. We modeled the uncer-

tainty in the statistical description of the processes, by assuming that their

spectral density matrices lie within certain classes of such matrices. Then, we

formalized the problems as games, whose saddle point solutions were found for two

dii
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specific classes of multivariate spectral. classes. The first such class (FL)
L

represents a linear contamination of a nominal spectral density, and it Includes an

energy constraint. The second class (FQ ) is represented by fixed energy on a

finite number of prespecified frequency quantiles.

Both the F and the F classes were assumed to consist of absolutely continuousL Q
spectra only. If these classes are allowed to include singular spectra as well,

the saddle point solutions found, cannot be guaranteed to belong to the appropriate

spectral classes. There is an exception for the class FL, where we can allow the
Lp

nominal spectrum F () (but not H()) to have singularities at a certain set of
0

points. Then, each member of F has singularities at exactly the same points as
Lg r s e l e e

F (w). The results that we obtained can be readily extended to include this case.

However, when H ) is allowed to have singularities, then a solution does not in

general exist. For the latter case and for scalar stationary process an approximate

solution is given by Hosoya (1978).

All the derived solutions for the prediction and interpolation games correspond

to the eigenvalues with the "flattest" possible tails, or equivalently to measures

with the most evenly spread energy. For the F class we obtained identical spectral

density matrices for both the prediction and the interpolation solutions, which are

diagonal, with a single eigenvalue that is piece-wise constant.

The solutions that we obtained for the F class are not unique, and we just
Q

selected the simplest possible. The solutions for the F class are also nonunique,
L

in general. All such solutions attain, however, the same saddle value of the game. . -

'a..

• .'...',*
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